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Supervised by
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Introduction

In recent decades, high-energy astrophysics has undergone a remarkable transformation driven

by advances in our observational, computational and theoretical modelling capabilities. One

of the fields that has benefited most from these advances is the study of young star clusters;

objects that, in addition to their traditional interest as natural laboratories for stellar evolution,

gravitational dynamics and galactic formation [1, 2, 3, 4, 5, 6], have emerged as possible cosmic

ray accelerators. This possibility has opened up to new interdisciplinary studies connecting

stellar evolution, plasma physics and particle physics, greatly enriching the state of the art of

modern astrophysics.

A central open question in astroparticle physics is the origin of cosmic rays with energies

reaching the PeV scale. While supernova remnants have long been considered the primary

galactic accelerators [7, 8, 9, 10, 11], recent observational and theoretical studies suggest they

may fall short of explaining the CR spectrum up to a few PeV [12], as particles can only be

accelerated up to a few hundreds of TeV. This has led to the search for so-called PeVatrons

(astrophysical sources capable of accelerating particles to PeV energies).

In this context, young massive star clusters have recently gained attention as promising

candidates [13, 14], as they concentrate a large number of massive stars in relatively small

volumes, giving rise to extreme physical conditions. The powerful stellar winds generated by

these stars can interact with each other, forming hot bubbles of ionised gas and turbulent

shocks that could act as efficient sources of particle acceleration

[15, 16, 17, 18, 19, 20, 21, 13, 22, 23]. Their collective winds, high densities and turbulent

environments provide the necessary conditions for long-term particle acceleration through

repeated shock interactions or stochastic processes. Thus, the hypothesis that these

environments may contribute significantly to the galactic cosmic ray population has become

increasingly relevant, especially given the limitations of supernova remnants in explaining all

the features of the observed spectrum. However, many aspects of this scenario remain
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unexplored or poorly constrained, both theoretically and observationally. The present project

contributes to this emerging field by providing a computational framework to simulate these

environments and test their viability as potential PeVatrons.

This work presents a numerical study of the environment generated by the collective stellar

wind in young clusters, with the aim of analysing its structural properties and studying the

propagation of particles within it. The idea behind this work has been to always stick to one

dimensional models, so that their computational workload is light enough to make possible

eventual systematic analysis and fits for the interpretation of the observed γ-ray emission

detected in several galactic clusters. To this end, a complete numerical solver for the

spherically symmetric transport equation has been developed as part of this work. To the best

of the author’s knowledge, no existing public tool is specifically designed to address this

problem. Cosmic ray transport is typically studied on galactic scales, and the available codes

(such as GALPROP [24], DRAGON [25] or PICARD [26]) are tailored for different geometries,

usually Cartesian or cylindrical, not supporting spherical symmetry. This constitutes a major

contribution to the field, providing a tool specifically adapted to the study of astrophysical

sources.

The work is structured as follows. First, the necessary theoretical framework is introduced,

describing the physics underlying the interaction of the stellar wind, the fundamentals of

cosmic ray propagation and the transport model used. Next, the methodology used in the

stellar bubble simulations with PLUTO is described, detailing the domain design, the initial

and boundary conditions and the main results obtained in the form of spatial profiles of

density, pressure, velocity and temperature. Subsequently, the numerical solver developed for

this project is presented, explaining its mathematical formulation, the discretisation strategy

and the algorithms used. A subsection of numerical validation is included. Finally, a

conclusion summarizes the main findings and outlines the future work required to integrate the

solver with the hydrodynamical simulations, ultimately enabling a complete modelling pipeline

for studying observable cosmic ray emission from stellar clusters.

This approach is intended to be a first step towards the construction of a computational

tool that allows realistic simulations of star clusters to be connected with γ-ray observations. In

addition to contributing to the understanding of the role of these objects in particle acceleration,

the development of a simulation and analysis tools constitutes a methodological added value,

expanding the capabilities of numerical research in high-energy astrophysics.
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Chapter 1

Cosmic rays acceleration in star

clusters

1.1 Galactic cosmic ray acceleration

Cosmic rays (CRs) were discovered in the early XXth century, usually attributed to the Austrian

physicist Victor Hess, who conducted a series of balloon flights to measure atmospheric ionization

between 1911 and 1913. At the time, it was believed that radiation in the atmosphere came

from the Earth’s crust, but Hess found that ionization rate actually increased with altitude,

suggesting an extraterrestrial origin. A key ascent during a solar eclipse confirmed the Sun

was not the source, leading Hess to conclude that highly penetrating radiation was entering the

atmosphere from space. His pioneering work earned him the Nobel Prize in Physics in 1936,

cementing his role as the discoverer of CRs.

It is also worth mentioning the work of Italian physicist Domenico Pacini, who, prior to Hess’s

flights, conducted underwater measurements that revealed a significant decrease in radiation

compared to the surface, thus suggesting a non-terrestrial component. Though his work has

been historically overlooked, Pacini’s contribution is now recognized as a foundational piece in

the discovery of CRs [27].

Since the discovery of CRs, extensive research has been conducted to understand their nature,

origin and impact in the Universe. We now know that CRs are predominantly composed of

atomic nuclei (about 99%) with protons making up approximately 87% and alpha particles

around 12%, along with a smaller contribution from heavier nuclei and minor fraction of electrons

and antimatter [28]. Far from being a mere curiosity of high-energy astrophysics, CRs are now
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recognized as a fundamental component of the Universe. In the Milky Way, their energy density

is estimated to be UCR ≈ 1 eV cm−3 [29], comparable to that of other key constituents such

as the interstellar radiation field (∼ 0.5 eV cm−3; [30]), the average Galactic magnetic field

(∼ 0.22 eV cm−3; [29]) and the cosmic microwave background (∼ 0.26 eV cm−3; [31]). This

energetic presence makes CRs essential not only in the context of high-energy phenomena,

but also in the dynamics of the interstellar medium and the process of star formation, where

thanks to their ability to penetrate deep within diffuse and molecular clouds, they can provide

significant ionization, ultimately affecting the dynamic of the cloud and triggering numerous

chemical reactions creating complex molecular compounds.
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Figure 1.1: CR spectrum observed from at Earth [32].

However, despite over a century

of research, many open questions remain

regarding the nature and origin of CRs.

One of the most important enigmas relates

to the structure of the observed energy

spectrum. The CR spectrum measured

at Earth is well described by a broken

power law extending across nearly 12 decades

in energy. Above approximately 10 GeV, the

spectral index starts around about −2.7, but

the spectrum exhibits three notable features:

the so-called knee at ∼ 3 · 1015 eV, the ankle

at ∼ 1018.5 eV, and a suppression at the

highest energies [32]. Between the knee and

the ankle the spectral index slightly shifts

towards −3.1. All these features are indicative of transitions in the dominant acceleration

mechanisms and (or) the origin of the CRs and can be seen on Figure 1.1.

Below ∼ 10 GeV, the spectrum is significantly affected by solar modulation [33, 34], which

prevents the lowest energy CRs from entering the inner Solar System. At higher energies, above

the ankle, the cosmic-ray population is generally believed to become dominated by extragalactic

sources [35, 36]. Morevoer, the supression of the CR population is believed to be due to the

so-called Greisen–Zatsepin–Kuzmin (GZK) cutoff [37]. If this suppression truly reflects the GZK

mechanism or the maximum energy achievable by cosmic accelerators remains an open question,

strongly dependent on the, still uncertain, chemical composition of CRs at these energies.
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Particularly relevant for the scope of this work is the feature known as the knee. This

steepening of the spectrum has been interpreted as a signature of the maximum energy

attainable by galactic accelerators. Supporting this interpretation is the observed gradual shift

in chemical composition above a few PeV [38]. This compositional change suggests a nuclear

charge dependant cutoff mechanism, so that the maximum energy reached in acceleration

processes scales with the particle’s electric charge. This way, the knee could be explained as

the result of a superposition of individual cutoffs for each nuclear species.

To explore this possibility, one needs to understand what the galactic accelerators of CRs are

and what properties they show. In particular, this framework requires that galactical sources

produce CRs up to ∼ 3 PeV, where the knee appears. While there are some well-established

mechanisms that can, in principle, accelerate particles to PeV energies, reaching such energies

requires extremely favorable conditions (namely, large acceleration regions and sufficiently high

magnetic fields). Thus, the key open question is not whether a mechanism can account for

PeV acceleration, but rather which astrophysical sources can provide an environment where the

acceleration mechanism operates efficiently up to these energies.

To sum up the problem, regardless of the set of galactic accelerators considered, they should

of course reproduce the observed luminosity of CRs in the galaxy. This is,

LCR =
UCRVMW

τconf
≈ 2.5 · 1040 erg s−1;

where VMW ≈ 2 · 1011 pc3 is the volume of the Milky Way and τconf ≈ 20 Myr [39, 40] is the CR

confinement timescale in the Galaxy.

At first, supernova remnants (SNR) where considered good PeVatron candidates, as the

kinetic energy released in a supernova explosion is ESN ≈ 1051 erg [41] and the rate of supernova

explosions occurring in the Milky Way is τSN ≈ 0.02 yr−1 [42]. In other words, the total power

injected by supernova explosions is

LSN =
ESN

τSN
≈ 6.3 · 1041 erg s−1,

which would be enough to account for the observed CR luminosity even if just a fraction of

this power goes to accelerating CRs. However, one needs to understand the mechanism of

acceleration to legitimate that such assumption is indeed correct.

This mechanism is called the first-order Fermi mechanism or the Diffusive Shock Acceleration

(DSA) [43, 44]. The supersonic expansion of supernova explosion generates a collisionless shock

wave that propagates through the interstellar medium (ISM). It is in this shocks that the DSA
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takes place. To see how the process works in general words, let’s consider the shock front

as a discontinuity separating two regions with different plasma flow velocities: the upstream

(unshocked plasma), moving at speed u1; and the downstream (shocked plasma), moving at a

slower speed u2 < u1 in the shock frame.

Charged particles entering the upstream region begin to diffuse due to magnetic turbulence,

quickly becoming isotropic in velocity. Some of them cross the shock into the downstream region,

where they diffuse again. Each time a particle crosses the shock back and forth, it effectively

collides with plasma moving toward it, gaining energy in the process due to the velocity difference

|u1 − u2|. This is a process analogous to that of a collision with a moving wall.

This repeated crossing and scattering leads to a systematic energy gain, as each shock cycle

increases the particle’s energy by an amount proportional to ∆E ∝ (|u1 − u2|/c) · E. Over

multiple cycles, particles can reach very high energies, making DSA a compelling mechanism for

accelerating CRs in astrophysical shocks such as those produced by supernova remnants.

The maximum energy up to which supernova explosions can accelerate CRs by means of

DSA can be estimated and results insufficient to arrive to the knee regime in the observed CR

spectrum (at least in standard conditions) [45]. This then has led to continue the search of

PeVatrons, where stellar clusters have recently gained importance. A brief discussion on this

hypothesis is offered in the next section.

1.2 Introduction to stellar clusters physics

The question of what a stellar cluster is does not have a clear answer and is still under debate

[46]. Different definitions have been used throughout time and are currently accepted, many of

them establishing conditions regarding gravitational boundedness, mean mass density or minimal

population [47, 48]. The implications of choosing one particular definition and the differences

between them could be a topic of whole study and, in any case, is not of particular transcendence

in the work that we will present here. Thus, we can simply define a stellar cluster as a group of

stars that are gravitationally bound to one another.

Stellar clusters can also be classified regarding their morphology, total mass or age [46]; but

far from entering in these kind of discussions, we will from now on focus on the so-called young

massive stellar clusters (YMSCs). The reason behind these decision is that these are the good

PeVatrons candidates: they are young enough to not having experienced a considerable amount

of supernovae (not much older than 10 Myr) and sufficiently massive to produce significant CR
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acceleration (with a total mass bigger than 103 M⊙).

It is important to note that the physics and evolution of stellar clusters can vary significantly

depending on a multitude of factors, including their initial conditions, environment and stellar

composition. However, in the case of the clusters relevant to this study, our interest does not

lie primarily in the internal stellar dynamics or detailed stellar evolution, but rather in the

collective effect of their stellar winds. These winds interact and combine to carve out a large-

scale structure in the surrounding interstellar medium: a hot, low-density bubble bounded by a

dense shell; which constitutes the environment where CR acceleration is thought to occur. This

acceleration takes place mainly via the DSA mechanism previously mentioned.

(1) Stellar wind

Termination shock

(2) Shocked stellar wind

(3) Shocked interstellar gas

(4) Interstellar medium

Forw
ard

shock

C
ontact

discontinuity

Figure 1.2: Stellar cluster wind bubble structure.

To understand this environment, it is

necessary to describe the basic structure of a

stellar wind bubble. This system is typically

divided into four concentric regions: (1) the

freely expanding stellar wind, (2) the shocked

stellar wind, (3) the shocked interstellar

medium (ISM) and (4) the unperturbed ISM.

These regions are separated by three key

interfaces: the termination shock, where

the supersonic stellar wind is decelerated

and heated; the contact discontinuity, which

separates wind material from swept-up ISM;

and the forward shock, which compresses and

heats the ISM as the bubble expands. This is

schematically shown in Figure 1.2. In this description, the stellar cluster is considered pointlike

in the centre of the concentric spheres.

A useful theoretical framework to describe the evolution of such structures is provided by the

classic model developed by Weaver in 1977 [49]. This model offers a simplified but physically

insightful description of how continuous energy injection from stellar winds drives the formation

and evolution of a wind-blown bubble in the surrounding interstellar medium. Despite its

assumptions, such as spherical symmetry, a homogeneous ambient medium and a steady energy

input, it captures the essential features of the system and provides analytical estimates for key

quantities. In what follows, we briefly review the main aspects of this model relevant to our

study.
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The model [49] divides the system’s evolution into several stages, depending on the dominant

physical processes at play. Each stage exhibits different scaling relations and structural features,

making it essential to distinguish between them when modelling or interpreting observational

data.

The early stage of bubble evolution, lasting typically ∼ 104 yr, is characterised by an initial

expansion driven by the cumulative effect of stellar winds. During this phase, the forward shock

radius evolves as RFS(t) = AL
1/5
w ρ

−1/5
0 t3/5, with A a dimensionless constant and Lw the wind

luminosity. The cold wind termination shock and contact discontinuity positions, RTS and

RCD, can also be approximated analytically under the assumption of an isobaric hot shocked

wind region. However, due to the brevity of this stage and the breakdown of the adiabatic

approximation as the cooling of the shocked ISM becomes important, it is not of practical

relevance for our study. Therefore, in this work we focus on the subsequent intermediate stage,

where the bubble has entered a self-similar expansion regime.

In this stage, the evolution of the bubble is mainly characterised by the start of radiative

cooling being efficient in the hot shocked interstellar gas. As this radiative cooling is not included

in the mathematical derivations, its effects are manually included by the assumption that the

cooling causes an important contraction that leads to the shocked ISM to reduce its volume until

it constitutes a thin shell around the shocked stellar wind. Thus, the approximation RCD ≈ RFS

can be made, and we consider that the forward shock and the constant discontinuity are what

define the size of the bubble. We therefore treat indifferently RB = RCD ≈ RFS. In this

conditions, a force balance in the shell yields

d

dt

[
MS

dRB

dt

]
= 4πR2

BPSW,

where MS is the total mass contained in the shell and PSW is the pressure in the region of

shocked stellar wind.

This momentum balance can be put in terms of energy balance [49] where the wind luminosity,

Lw, and the mean bubble density, ρ0, are used. After some easy calculations it is shown that

RB(t) =

(
250

308π

)1/5

L1/5
w ρ

−1/5
0 t3/5. (1.1)

An expression for the pressure PSW can also be obtained, resulting in

PSW(t) =
7

(3850π)2/5
L2/5
w ρ

3/5
0 t4/5.

However, what we are more interested about is that this expression can now be used to find

the radius of the forward shock. Indeed, this discontinuity is characterised by the fact that it
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is there where the ram pressure of the free expanding wind equates that of the shocked wind.

This is,
Ṁwvw

4πR2
TS(t)

= PSW(t) =
7

(3850π)2/5
L2/5
w ρ

3/5
0 t4/5;

from which we deduce

RTS(t) =

√
(3850π)2/5

28π
Ṁ1/2

w v1/2w L−1/5
w ρ

−3/10
0 t2/5. (1.2)

The set of equations (1.1) and (1.2) describes the structural evolution of the bubble during

the intermediate stage; when thermal conduction between the shocked wind and the ISM plays

a key role and radiative cooling can be neglected in the bubble (but we still include the ad-

hoc modification in the shocked ISM shell previously described). The seminal work by Weaver

in 1977 [49] presents a much more detailed analysis, providing the full radial profiles of the

relevant physical quantities. The physical discussions therein have shaped the understanding of

stellar cluster bubbles over the past decades and provided the conceptual basis for subsequent

improvements and extensions.

To derive these expressions, the work used one of the simplest forms of hydrodynamical

motion equations, 

∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v = 0,

∂v

∂t
+ v · ∇v +

∇p

ρ
= 0,

∂p

∂t
+ v · ∇p+ ρc2s∇ · v = 0;

(1.3)

where, of course, only radial dependence was assumed. These equations describe mass,

momentum and energy conservation in a compressible and non-viscous fluid. However, such

formulation neglects various physical processes that can be of considerable importance in the

structure and long-term evolution of stellar wind bubbles.

One of these is thermal conduction, which plays a key role in smoothing temperature gradients

and regulating the transfer of energy between the hot shocked wind and the cooler surrounding

material. Weaver considered this effect qualitatively by assuming that radiative cooling leads

to a very thin shell structure, but a more rigorous approach includes an explicit conductive flux

term in the energy equation. This term is typically modelled by the Fourier Law as

Fcond
class = −κ(T )∇T, (1.4)

where κ(T ) is the thermal conductivity, often taken to follow a Spitzer-type temperature

dependence in astrophysical plasmas [50]. A more sophisticated expression can also be
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considered to account for a saturation value, F cond
sat , of the flux,

Fcond =

(
F cond
sat

F cond
sat +

∣∣Fcond
class

∣∣
)
Fcond
class. (1.5)

The divergence of this flux then acts as a source term in the energy equation, accounting for the

redistribution of thermal energy within the bubble.

Another relevant physical process is optically thin radiative cooling, particularly important

in dense regions of the shell or at late evolutionary stages of the bubble. Radiative losses can

be included via a cooling function Λ(T ), leading to an energy sink term in the energy equation

of (1.3). There are many ways of choosing the cooling function, but one approach is to use a

simple power law,

Λpl(T ) ∝ ρ2Tα. (1.6)

This type of temperature dependence arises, for example, when bremsstrahlung is the dominant

emission mechanism.

While the Weaver model captures the essential physics and yields qualitatively accurate

descriptions, it falls short in reproducing certain quantitative aspects: most notably the observed

bubble sizes, which tend to be considerably smaller than predicted. One major limitation lies

in the assumption of spherical symmetry. Observations clearly indicate that hydrodynamic

and magnetohydrodynamic instabilities arise early during the expansion, quickly distorting the

bubble’s shape and increasing the surface area of the interfaces [51, 52]. This enhances conductive

energy losses, which in turn reduces the expansion rate. Furthermore, accounting for radiative

cooling throughout the entire evolution and not just in later stages is also expected to reduce

the predicted size of the bubble.

Although many recent works have moved towards multidimensional approaches in order to

capture hydrodynamical instabilities and abandon spherical symmetry, there is, to our

knowledge, no one-dimensional model that both retains computational simplicity and yields

more accurate predictions than the Weaver solution. This project aims to provide such a

model, in order to develop a public computational tool that can serve as a practical and

accessible resource for the community.

1.3 The transport equation

To the moment, we have presented the problem regarding CRs origin and why stellar clusters

are relevant in the subject. A brief introductory text in regard to stellar cluster bubbles has

also been provided. However, we still need a mathematical and physical foundation for how the
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analysis of CR acceleration is going to be made. This is why we now introduce the transport

equation.

As previously discussed, CR acceleration in stellar clusters is believed to occur primarily via

the DSA mechanism at the termination shock of the collective stellar wind. While a direct

numerical modelling of DSA would provide a more complete description, it lies beyond the

scope of this work, as it would require a much more complex treatment. Instead, we adopt

a simplified approach: we consider that the termination shock acts as an effective source of

already accelerated CRs, injecting a predetermined distribution function into the system. The

focus of our analysis is therefore not on the acceleration process itself, but on the subsequent

propagation and evolution of these CRs throughout the interior of the bubble.

Understanding how the injected particles are transported under the combined influence of

advection, diffusion and energy losses is essential for predicting the resulting observable

signatures. In particular, solving the transport equation allows us to estimate the

spectro-morphological distribution of the CR population at different times. From this and the

interaction with radiation and magnetic fields in the region, one could in principle compute the

expected non-thermal emission, such as the γ-ray spectrum produced through hadronic

interactions or inverse Compton scattering. However, the derivation of the resulting observable

spectrum lies beyond the scope of this thesis and would constitute a dedicated project on its

own. The goal of the present work is to lay the necessary foundation by developing a consistent

framework that couples the simulation of the stellar wind bubble with the evolution of the CR

distribution within it. These results can then be used as the starting point for future studies

focused on the prediction of emission spectra and their comparison with observations.

In this context, the transport equation that is relevant to our study is

∂f

∂t
+∇ · (uf)− ∂

∂p

(p
3
(∇ · u) f

)
= ∇ [D∇f ] +Q;

where f(t, r,p) is the distribution function of the CRs, D(t, r,p) is the diffusion coefficient and

Q(t, r,p) is a source term. Here, u is the velocity field within which CRs are advected, this is to

say, the velocity of the bubble wind. Assuming spherical symmetry and only radial dependence,

this equation can be rewritten as

∂f

∂t
+

1

r2
∂(r2urf)

∂r
− ∂

∂p

[
p

3

(
1

r2
∂(r2ur)

∂r

)
f

]
=

1

r2
∂

∂r

(
r2D

∂f

∂r

)
+Q.

In order to have a complete problem, this equation needs to be solved with particular
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boundary and initial conditions. In our specific case, the boundary conditions1 are

∂f

∂r
(t, 0, p) = 0 and f(t, Rend, p) = fISM(p).

While the initial condition yields

f(0, r, p) = fDSA(p)δ(r −RTS).

To sum up, the problem of transport that we will aim to solve numerically is

∂f

∂t
= − 1

r2
∂(r2urf)

∂r
+

∂

∂p

[
p

3

(
1

r2
∂(r2ur)

∂r

)
f

]
+

1

r2
∂

∂r

(
r2D

∂f

∂r

)
+Q, r ∈ (0, Rend), p ∈ R+, t ∈ R+;

∂f

∂r
(t, 0, p) = 0, f(t, Rend, p) = fISM(p), p ∈ R+, t ∈ R+;

f(0, r, p) = fDSA(p)δ(r −RTS), r ∈ (0, Rend), p ∈ R+.

(1.7)

To the best of our knowledge, no existing public numerical code currently implements a solver

for the CR transport equation in spherical symmetry. In particular, the simultaneous inclusion

of advection, diffusion, energy losses and source injection within a dynamically evolving wind

bubble structure is not addressed by standard tools. For this reason, as part of the present

work, we have developed a complete and dedicated numerical routine specifically designed to

solve the above system. This solver constitutes one of the main methodological contributions of

the thesis and provides a flexible framework for future studies aiming to couple stellar cluster

environments with CR propagation and emission modelling.

1The physical condition is that lim
r→∞

f(t, r, p) = fISM(p), but numerically we can simplify the implementation

by assuming Rend ≫ RB.
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Chapter 2

Simulating stellar clusters with

PLUTO

2.1 What is PLUTO?

PLUTO is a high-performance, modular and highly versatile numerical code designed to solve

systems of conservation laws relevant to fluid dynamics in astrophysical contexts. Originally

developed by A. Mignone and collaborators [53], it has become a widely used tool in

computational astrophysics due to its flexibility, accuracy and ability to model a wide range of

physical processes across different regimes.

At its core, PLUTO integrates a general system of partial differential equations in

conservation form, expressed as

∂U

∂t
+∇ ·Th(U) = ∇ ·Tp(U) + S(U),

where U denotes the set of conservative variables, Th the hyperbolic (advective) flux tensor, Tp

the parabolic (diffusive) flux tensor and S(U) the source terms. The system is typically closed

with an equation of state and variables are converted between conservative and primitive forms

as needed.

PLUTO supports a wide array of physical modules, enabling simulations of

magnetohydrodynamical flows in different regimes even including relativistic approaches.

However, it is the classical hydrodynamics model that we will make use of in this work. These

different modules can be enabled independently, allowing the user to tailor the solver to the

specific physical processes of interest. Non-ideal effects such as viscosity, thermal conduction or

optically thin radiative cooling are also available via additional modules.
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A key strength of PLUTO lies in its use of finite volume method (FVM) and finite difference

shock-capturing schemes. These are designed to handle highly non-linear flows with strong

discontinuities such as shocks and contact surfaces, which is exactly what the systems that we

will study exhibit. The FVM relies on a conservative formulation that tracks the evolution of

cell-averaged quantities over time. In this framework, the computational domain is discretised

into control volumes and the time evolution of the solution depends critically on the accurate

evaluation of fluxes across the interfaces between adjacent cells. This is where the so-called

Riemann solvers come into play.

In the context of FVM, a Riemann problem is a local initial value problem consisting of

a single discontinuity between two constant states. At each cell interface, this discontinuity

approximates the local solution structure and the Riemann solver provides a numerical flux

based on the evolution of this discontinuity. Therefore, the design and choice of Riemann solvers

is a central aspect of FVM schemes, as it determines the method’s ability to accurately capture

shocks, rarefactions and contact discontinuities in the flow. In this sense, PLUTO implements

a variety of Riemann solvers and time integration schemes that the user can choose depending

on their needs.

PLUTO also supports multiple geometries and, in particular, it allows simulations in

spherical coordinates with one-dimensional symmetry. This feature is especially relevant for

our study. Although the computational grid can be dynamically refined using adaptive mesh

refinement, such an approach would introduce considerable complexity into the subsequent

systematic analysis, exceeding the scope of this project. For this reason, a static grid has been

employed.

The code is fully parallelizable using MPI and is well suited for high-performance computing

on modern computational clusters. In fact, although we initially performed serial simulations,

we soon transitioned to parallel runs, observing a notable improvement in performance.

Its modular design also allows for easy integration of user-defined routines to account for

additional physics and to set initial and boundary conditions, making it a flexible platform for

custom setups.

Related to this is another important reason for choosing PLUTO: its open-source nature.

As an open-science tool, it allows full access to the source code, ensuring transparency,

reproducibility and the possibility of modification or extension by the user. This is particularly

advantageous in a research context, where adapting existing tools to new problems is often

necessary.
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Moreover, PLUTO is written in the C programming language and is designed to be compiled

and executed via the command-line interface. This facilitates the integration of simulations

within automated workflows through Bash and Python scripting. Such automation enables

large parameter sweeps, batch processing and the development of additional tools for data pre-

and post-processing, analysis or visualization. For this project, custom scripts were developed

to compile and run simulations, manage outputs and systematically explore the dependence of

the results on various physical parameters.

In this work, PLUTO has been employed to perform hydrodynamic simulations of wind-blown

bubbles in young stellar clusters. In the next sections, we show how these simulations provide the

structural background in which cosmic ray transport is subsequently modelled, making PLUTO

a critical component of the multi-stage framework developed in this thesis.

2.2 Configurations considered

The motivation behind conducting these simulations is clear: obtaining the spatial and temporal

evolution of the bubble profiles is essential for a subsequent cosmic ray propagation within them.

Simpler approaches could certainly have been considered. For instance, one might rely directly

on the analytical solution provided by the Weaver model and perform cosmic ray simulations

on top of it. This would, in principle, allow for simpler numerical implementations and greater

computational efficiency. However, such an approach would not significantly advance the current

state of the art and the expected results would presumably be comparable to those already

available in the literature. For this reason, we chose to perform our own simulations, so that

to gradually increase the physical complexity of the model until sufficiently refined results were

obtained.

The initial conditions of all the simulations that we will present here are well known in the

literature [54] for leading to inflated bubble structures as the one presented in Figure 1.2. In

brief, the system initially consists of a sphere of 100 pc divided in three sections: a cluster core of

radius ∼ 0.1 pc, a sphere of wind injection of ∼ 1 pc and the rest of the domain, which correspond

to the surrounding ISM. These values may slightly vary in some configurations because: the grid

considered might not lay in the exact points to achieve these radius and some simulations are

based on real cluster parameters, which require some slight modifications of the prescripted

magnitudes. In any case, the behaviour of the system is never modified by these variations.

Regarding the three initial regions mentioned, the cluster core is a region with fixed constant

parameters, which is not evolved in the simulation. It serves as to account for the volume of the
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cluster and to provide boundary conditions. The wind injection region is set initially following

the analytical results of Weaver [49], this is, it is a region with constant wind velocity, vw, and

thus a density profile that decreases as ρ(r) ∝ r−2 because of mass conservation. Pressure in this

intermediate region is set as to account for the temperature and the ram pressure of the wind.

The temperature of the wind, Tw, is known to be unimportant regarding the system dynamics,

and this irrelevance has been tested with our simulation. Thus, no important assumptions are

done in the selection of Tw. Regarding the surrounding ISM, which initially constitutes the

majority of the domain, the values chosen are the ones used in the literature [54]. At r = 100

pc, outflow boundary conditions are always imposed (although the dynamics of the system never

reach the domain bounds).

Regarding the discretization of the domain, the number of points in the radial direction

has been decided to be between 1000 and 3000, depending on the complexity of the structures

appearing and the computational workload. In every situation, the spatial discretization is

enough to fully resolve and have the solutions converged, so no further discussion about this

aspect needs to be done. This is, indeed, one of the strengths of having stuck to one dimensional

models, as the only coordinate being calculated in our simulations is the radial, with azimuthal

and polar directions being irrelevant due to symmetry assumptions. Detailed information on

how this is treated from a numerical point of view can be found in [53].

With respect to the choice of Riemann solver, we initially made use of a Lax-Friedrichs scheme

due to its simplicity and robustness. This solver provides a very diffusive but stable solution

and was a good starting point for testing general code behaviour. However, its high numerical

diffusion tends to smooth out discontinuities, such as shocks or contact interfaces, which resulted

inconvenient for our study.

To improve accuracy, especially in capturing the structure of the wind bubble and its

associated discontinuities, we later adopted a more sophisticated Harten-Lax-van Leer (HLL)

approximate solver. In particular, we made use of the HLLC implementation provided by

PLUTO, which provides specific routines to restore the middle contact discontinuity absent in

the simpler HLL scheme. This is particularly important in our context, where the correct

resolution of contact surfaces such as the interface between shocked wind and shocked ISM is

critical. The HLLC solver proved to yield more accurate and physically consistent results in

our simulations and was therefore chosen as the default solver in the final runs.

For completeness, it is convenient to mention here some other technical numerical details. As

is common in the numerical simulation of continuous physical systems and we already discussed,
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the solution is discretised and computed at a set of nodes defined over a spatial grid. However,

in order to evaluate fluxes at cell interfaces and to extract smooth profiles from discrete data,

interpolation between these nodes is required both during and after the simulation runtime.

How such interpolation is done is defined the reconstruction method.

Reconstruction techniques can vary in complexity, ranging from simple polynomial fits to

more sophisticated schemes that employ weighted nodes and special functional bases to avoid

non-physical oscillations. In all the simulations presented in this work, a piecewise linear

reconstruction is applied to the primitive variables, the implementation that PLUTO provides

is supplemented by a Total Variation Diminishing (TVD) limiter to control spurious

oscillations near sharp gradients or discontinuities. This method achieves second-order

accuracy in space and relies on a three-point stencil (that is, it uses each cell and its two

immediate neighbours to estimate the solution gradient across interfaces).

In regard to time discretization, a second-order TVD Runge-Kutta scheme is used. The time

step determination is managed by PLUTO using the information of previous integration steps

and imposing a CFL condition that can be slightly adjusted by the user in order to fulfil stability

criteria. Detailed information about the specific temporal treatment done by PLUTO for every

combination of selected modules and solvers can be found in [53].

We now turn our attention to the specific numerical simulations carried out in this work,

focusing on their parameter choices and implementation details. All of the simulations that we

will present in the next section, unless otherwise stated, are carried out under the consideration

of a fiducial stellar cluster model, whose properties are chosen to be representative of typical

YMSCs. In particular, we will consider1 Ṁ = 10−4 M⊙ yr−1 and Lw = 1038 erg s−1. The

chemical composition of the system is assumed to be purely neutral particles with proton masses.

With this setup, the system of equations presented in (1.3) is computed, always complemented

with an ideal equation of state,

p = nkBT =
ρ

muµ
kBT ;

where n the particle number density, kB the Boltzmann constant, mu the atomic mass unit and

µ the mean molecular weight. In our case of fully protonic gas, µ = 1.

In the first simulation presented, we study this simple model in order to observe the basic

dynamics of the system and the formation of wind-blown bubbles under idealised conditions.

This configuration serves as a benchmark to verify the implementation, test the numerical

1Note that vw is determined by the relation Lw = 1
2
Ṁv2w.
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stability of the setup and identify the qualitative behaviour of the main flow features.

However, we soon move towards more complex and physically realistic scenarios by

progressively incorporating additional physical processes that play a significant role in the

evolution of stellar cluster bubbles.

To study thermal conduction, we consider several simulations with varying assumptions.

Notably, the default value conductivity implemented in PLUTO, κPLUTO(T ), differs from the

classical Spitzer formulation typically used in astrophysical plasmas [50]. We therefore perform

simulations using both the PLUTO default value and the standard Spitzer conductivity, allowing

us to quantify the impact of this choice on the bubble structure. Furthermore, we explore the

effects of conduction saturation: by comparing simulations with and without saturation effects,

we evaluate their influence on the evolution of the system.

In parallel, we investigate the influence of optically thin radiative cooling. To this end, we

conduct a set of simulations with varying intensities of the cooling function, effectively modifying

the strength of radiative losses. This allows us to understand the degree to which cooling shapes

the dynamics of the bubble, particularly in the dense outer shell. Additionally, we examine the

numerical consequences of enabling the SHOCK FLATTENING routine provided by PLUTO, which

is designed to enhance stability near strong shocks and prevent non-physical oscillations in the

presence of steep gradients.

Finally, we bring together all the relevant physical processes (thermal conduction and

radiative cooling) in a simulation tailored to a real astrophysical object: the young massive

cluster M16, the Eagle Nebula. This final case aims to provide a more realistic representation

of stellar feedback in a galactic environment and serves as a proof of concept for the

applicability of our approach to observationally motivated scenarios.

2.3 Results

2.3.1 Purely hydrodynamical system

The results for the radial profiles of density, wind velocity, pressure and temperature in the case

of a purely hydrodynamical system are shown in Figure 2.1, where we present the evolution of

the system under the parameters and initial conditions reported in Section 2.2 after a time of

t = 7 Myr.

The density subplot reveals four distinct regions, which correspond precisely to those

described schematically in Figure 1.2. Starting from the centre of the sphere, where the stellar
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Figure 2.1: Results for the radial profiles of density (upper left panel), velocity (upper right panel), pressure

(lower left panel) and temperature (lower right panel), obtained for a bubble using a purely hydrodynamical

model. Initial conditions and parameters are detailed in Section 2.2.

cluster is located, the first region is characterized by a density profile that decreases as

ρ ∝ r−2. This behaviour is due to from mass conservation and can be derived in a spherically

symmetric outflow assuming that the wind velocity remains approximately constant. This

assumption is validated by the simulation results, as the velocity plot confirms that the wind

speed is indeed roughly uniform throughout this region.

After the first 7 Myr, the simulation shows the termination shock located at approximately

∼ 6 pc from the cluster center. This shock is marked by a discontinuity in all physical quantities

and shows the beginning of the shocked wind. Just behind it, the density profile flattens, defining

the bubble; that is, the volume filled with shocked stellar wind material. One notable feature is

that this entire region remains approximately isobaric and isothermal (as we assumed an ideal
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equation of state). These conditions are often postulated in analytical models and our numerical

results provide support for their validity.

At around ∼ 32 pc, a sharp contact discontinuity becomes evident in the density profile,

indicated by a significant jump. This discontinuity separates the shocked wind from the shocked

interstellar medium. A key characteristic of contact discontinuities is that, unlike shocks, they do

not involve jumps in either pressure or velocity. In our results, both quantities remain continuous

across this interface, as expected. This behaviour confirms the nature of the discontinuity and

supports the theoretical prediction that the pressure in the shocked wind and the shocked ISM

must be equal at the contact surface.

Beyond the contact discontinuity, the shell of shocked ISM exhibits a finite and clearly

visible thickness, which seems contradictory to the approximation used in the Weaver model,

where RCD ≈ RFS. This discrepancy is expected, as the assumption in the analytical model is

introduced ad hoc to account for physical effects not explicitly described by the mathematical

formulation.

Finally, the forward shock, located at approximately ∼ 36 pc, outlines the transition to the

unperturbed interstellar medium. Indeed, this region consists of cold, steady ambient gas2.

Figure 2.2: Position of maximum density over

time for the hydrodynamic simulation corresponding to

Figure 2.1. Comparison with the ∝ t3/5 predicted by

Weaver’s model [49].

Given these results, it is natural to compare

them with the time evolution predicted

by the Weaver model. Although exact

quantitative agreement is not expected (since,

as previously discussed, some of Weaver’s

assumptions are not strictly satisfied in our

setup), we do expect qualitatively similar

trends. In particular, by tracking the position

of maximum density over time, one can

estimate the evolution of the bubble radius,

which in the Weaver framework follows the

analytical expression given by (1.1). Such

comparison is shown in Figure 2.2.

The figure illustrates that the simulation

does not exactly reproduce the power-law scaling derived by Weaver [49]. However, the

overall trend remains close, and the deviation observed is within acceptable bounds, especially

2Which is imposed by initial conditions
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considering the simplifying assumptions made in the analytical model.

2.3.2 Thermal conduction

Let us now analyse the results regarding the simulations in which the additional conductive

term, given by the expression (1.5), is included in the computation. As we mentioned in previous

discussions, the treatment of thermal conduction can be done whether by taking into account

saturation effects or by neglecting them. Moreover, the typical value of conductivity used in

astrophysical plasmas is given by Spitzer [50] as

κS(T ) ≈ 1.2 · 1014
(

T

108 K

)5/2

erg s−1 K−1 cm−1.

However, PLUTO offers a default value for conductivity which reads

κPLUTO(T ) ≈ 5.6 · 1013
(

T

108 K

)5/2

erg s−1 K−1 cm−1.

This is to say, κS ≈ 2κPLUTO. In order to investigate the relevance of the particular choice

between both conductivities, we perform a set of simulations using both parameters (κS and

κPLUTO) each tested with and without saturation effects. This allows us to evaluate the

sensitivity of the system’s evolution to the specific choice of thermal conductivity and to the

inclusion of saturation. The results of this analysis is shown in Figure 2.3.

Figure 2.3 shows the state of the system at t = 4 Myr for the different conduction

configurations. All configurations are compared against the fiducial purely hydrodynamical

case. It is evident that none of the simulations exhibit significant deviations from the

hydrodynamical reference. Only the case with saturated conduction shows a slight difference

in the internal structure of the bubble, while the simulation without saturation remains nearly

indistinguishable from the fiducial case.

Although the question of whether or not to include saturation will be addressed in more

detail in the following discussion, it is already clear from Figure 2.3 that the specific choice of

thermal conductivity (this is to say, whether using κS or κPLUTO) has negligible impact on the

global evolution of the system. For this reason, we adopt the Spitzer conductivity κS as our

standard choice in the remaining simulations.

Let us now turn our attention to the analysis of saturation effects. As it is not clear from

Figure 2.3 how important for the dynamics of the system it is to include or not a saturation

approach, we present a new set of simulations specifically designed to clarify this point.

In order to do the analysis, we will perform simulations in the same conditions than those

presented in the Figure 2.3. We will have two groups of simulations: one group in which
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Figure 2.3: Comparison between the results for a purely hydrodynamical model and the different possible

implementations for conduction. No important deviations are observed, so the election of conductivity results

unimportant. Initial conditions and parameters are detailed in Section 2.2.

saturation effects will be taken into account and another one in which the classical conductive

flux without saturation will be the one used.

For both groups of simulations, we have progressively increased the value of conductivity,

multiplying by different scalars, in order to better understand the influence that the different

conduction schemes have in the system. The results corresponding to the simulations with

saturation are presented in the Figure 2.4 and those without saturation are shown in the

Figure 2.5.

Figure 2.4 shows the results of the simulations where saturation effects are included in the

conductive flux. A key observation is that we have been able to increase the conductivity up to

1000κ without encountering major numerical instabilities. As expected, increasing the thermal
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Figure 2.4: Results for the radial profiles obtained by increasing conductivities and using a model implementing

saturation in the computation of conduction. Initial conditions and parameters are detailed in Section 2.2. We

have used Spitzer’s conductivity [50].

conductivity significantly influences the structure of the bubble. At a fixed time (t = 8.63 Myr),

we observe clear shifts in the positions of the termination shock, contact discontinuity and

forward shock. These displacements are consistent with the interpretation of enhanced energy

transfer from the hot interior to the outer regions. Moreover, the density within the shocked wind

region increases with conductivity, as stronger conduction may promotes mass exchange from

the dense, cooler shell into the hotter, less dense bubble interior. However, it is worth noting

that the decrease in shell density is not visually evident in the plot due to the logarithmic scale.

The density gain inside the bubble (of the order of 10−3 cm−3) is relatively small compared to

the typical ISM density of ∼ 1 cm−3, and thus does not produce an appreciable change in the

dense shell, which remains around ∼ 4 cm−3. Future works on simulating this specific setup
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might provide further proof for our interpretations.

Figure 2.5: Results for the radial profiles obtained by increasing conductivities and using a model implementing

no saturation in the computation of conduction. Initial conditions and parameters are detailed in Section 2.2.

We have used Spitzer’s conductivity [50].

In contrast, Figure 2.5 presents the results for simulations in which saturation effects are

not included. In this case, the behaviour is qualitatively different and notably less physical.

First, the profiles show only very subtle changes as the conductivity is increased, especially

regarding the positions of the shocks and contact discontinuity, which remain virtually

unchanged across all tested values. Furthermore, we encountered severe numerical instabilities

when trying to increase conductivity beyond 10κ, which prevented the code from completing

the simulations. Even within this limited range, some numerical artifacts are visible,

particularly near the termination shock, where non-physical fluctuations suggest a breakdown

of the solution. These results reinforce the importance of including saturation effects when
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modelling conduction in hot, rarefied astrophysical plasmas, as neglecting them not only leads

to unrealistic dynamics but also compromises the numerical stability of the simulations.

2.3.3 Radiative cooling

After having understood the limitations of the implementation of conductivity and what the

optimal configuration for our setups is, we repeat the same study with radiative cooling. To this

end, the conductive therm is removed so as to study only the impact of radiative cooling.

As we mentioned in previous sections, the mathematical formulation of radiative cooling is

by means of a source term in the energy equation of the system (1.3). The simplest possibility

which is supported by physical arguments is to construct the cooling function by means of a

power-law, like we demonstrated in the expression (1.6), however, several alternatives are also

possible. Many more complex analytical expressions exist that try to model detailed atomic

and plasma processes across a wide range of temperatures and compositions. Nonetheless, such

expressions typically involve increased computational cost and model complexity, which is what

we want to avoid.

From a numerical perspective, an alternative to implementing complex analytic forms is to

tabulate the cooling function over a relevant temperature range. In this approach, the function

is precomputed and stored as a table, and during runtime the appropriate value is obtained via

interpolation. PLUTO provides a default cooling table of this kind, constructed for an optically

thin plasma with solar abundances. One question, therefore, is which of these approaches (power-

law or tabulated) offers the best balance between physical fidelity and numerical efficiency for

our specific problem.

Figure 2.6: Comparison of loss functions implemented

in PLUTO by the tabulated method or the default power-

law with α = 1
2
.

To evaluate difference between

these cooling schemes, we conducted an

analysis similar to the one previously carried

out for thermal conductivity. Specifically,

we compared the results obtained

using the power-law cooling function with

those obtained using the tabulated function

provided by PLUTO. The outcomes showed

only minor differences in the evolution and

structure of the system, with no significant

qualitative deviations. Due to the limited
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relevance of these results and space constraints, we do not include detailed plots in this

manuscript. However, given its greater physical realism and ease of use, we adopt the

tabulated approach as the standard cooling method for the remainder of this work.

To better understand the differences between both models, Figure 2.6 displays the

temperature dependence of the two cooling functions: the power-law with exponent α = 1
2 and

the tabulated loss function used internally by PLUTO. As can be seen, the tabulated cooling

function exhibits higher cooling rates over most of the temperature range, which is expected

given its derivation from detailed atomic physics for an optically thin plasma with solar

abundances.

What is of more interest is the influence of radiative cooling on the dynamics of the system.

To investigate it, we perform a new set of simulations in which the intensity of the cooling

function is progressively reduced. This is done by applying scaling factors to the values in the

tabulated loss function provided by PLUTO, so as to diminish the overall strength of radiative

losses.

The initial set of simulations performed with progressively reduced cooling intensities

produced results that were numerically unstable and physically inconsistent. In particular,

unphysical oscillations appeared near strong shocks, which is a classical sign of numerical

instability and lack of convergence. To address this issue, we activated the SHOCK FLATTENING

subroutine provided by PLUTO, which is specifically designed to improve the robustness of the

numerical scheme in regions with steep gradients. This routine acts by locally increasing

numerical dissipation around strong shocks, suppressing spurious artifacts. Once activated, the

simulations produced smooth and physically meaningful profiles, restoring the expected

behaviour of the system. As a result, this option is enabled in all subsequent simulations

presented in this work.

All these results are presented in Figure 2.7. The Figure shows the radial profiles of density,

velocity, pressure and temperature for the set of simulations with progressively reduced radiative

cooling. One of the most striking outcomes can be seen in the velocity plot (top right), where

strong numerical instabilities manifest as large, non-physical oscillations over almost the whole

domain.

In contrast, the simulation in which the SHOCK FLATTENING subroutine was activated was

performed using the same radiative cooling table as the Tab case but results in a much more stable

and physically consistent solution. Notably, the discontinuities are cleanly resolved and the

velocity profile no longer exhibits artificial noise, highlighting the importance of this numerical
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Figure 2.7: Results for the radial profiles obtained by decreasing emission rates. The simulation with the

SHOCK FLATTENING subroutine has been added to the plot and shows a much more physical behaviour than the

others. Initial conditions and parameters are detailed in Section 2.2.

treatment when strong shocks and steep gradients are present.

From a physical perspective, the influence of radiative cooling becomes evident as the

cooling intensity increases. The shocked wind bubble progressively shrinks and eventually

almost disappears in the strongest cooling cases, resulting in a configuration that transitions

nearly directly from the free wind to the shocked ISM. This is a significant qualitative change

in the structure of the system. Compared with the fiducial purely hydrodynamical simulation

(shown in dashed gray), the size of the bubble is notably reduced and the shell is considerably

thinner. This behaviour is in good agreement with observational evidence, which reports

bubble sizes smaller than those predicted by Weaver’s model. Therefore, these results reinforce

the idea that radiative cooling is a crucial ingredient in obtaining realistic stellar wind bubble
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models.

2.3.4 Application to real star cluster

To conclude this section, we present a set of simulations based on the physical parameters of the

young massive stellar cluster M16 (also known as the Eagle Nebula). This system provides an

interesting test case due to its well-characterized properties and the availability of observational

constraints. We ran three distinct simulations: a purely hydrodynamical one, a second that

included thermal conduction and a third incorporating both conduction and radiative cooling.

This progression allows us to assess how each additional physical process modifies the evolution

of the bubble and how closely the numerical results approximate the observed structure of M16.

The Figure 2.8 shows the results for all these runs.

Figure 2.8: Results for the radial profiles obtained by different physical models, using M16 parameters as initial

condition [55].
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Although the estimated age of M16 is estimated to be around ∼ 2 Myr, we find that even

when simulating only up to 1 Myr, the predicted bubble radius exceeds the observed one

(RM16
obs ≃ 10 [56, 57]) in all cases (including the most physically complete model with radiative

cooling). This discrepancy highlights the limitations of one-dimensional simulations, which

cannot capture the development of multidimensional hydrodynamical and

magnetohydrodynamical instabilities that are known to strongly influence bubble evolution.

Nonetheless, the simulation with conduction and radiation yields a significantly better

agreement with observations than simpler models and, in particular, improves the predictions

of the Weaver solution. This is especially relevant considering that the Weaver model tends to

overestimate bubble sizes due to its neglect of radiative losses and geometric instabilities,

which are only partially included in our one-dimensional treatment.

It is also worth noting that, in order to properly resolve the extremely thin shell forming at

the edge of the bubble, we increased the spatial resolution up to 25000 grid points in the case of

the complete simulation. This level of refinement was necessary to fully capture the structure

of the shell without introducing numerical artifacts. What is remarkable is that, thanks to the

reduced dimensionality of the model, the simulations remained computationally feasible despite

the high resolution.

The formation of a very dense and compact shell (almost resembling a Dirac delta) is not

an anomaly, but rather a well-understood and expected feature of these systems. Physically,

the dynamics within the bubble shell lead to the accumulation of material and compression at

the shock front, which in turn increases the efficiency of radiative cooling. This enhanced

cooling causes further contraction, reinforcing the shell’s thin and dense profile. Such

behaviour has been documented in previous studies [58, 59], where it posed significant

numerical challenges, especially in multidimensional simulations. In our case, while the use of

a one dimensional framework reduced computational difficulties, we did encounter calculations

limitations for certain parameter regimes.

Finally, it is interesting to note that in the hydrodynamical and conduction-only cases, the

positions of the contact discontinuity and the termination shock predicted by our simulations

match remarkably well with those obtained analytically from the Weaver solution (not only for

M16, but also for other clusters tested). However, once radiative cooling is included, deviations

appear, as expected, reinforcing the idea that radiation plays a critical role in shaping the

observable structure of stellar wind bubbles.

With this, we have achieved the intended objectives regarding the numerical simulation of
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the stellar wind bubble, obtaining physically consistent and sufficiently detailed radial profiles

for the main dynamical quantities. These results lay the foundation for the next stage of the

project, which consists in implementing a solver for the cosmic ray transport equation. The

output of PLUTO simulations analogous to the presented in this section will serve as input

profiles for this following transport model in future works.
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Chapter 3

Development of a numerical solver

for transport equation

3.1 Mathematical foundations of the solver

We now present the main aspects of the mathematical derivation regarding the design of the

numerical solver developed in this work. The objective is to solve the transport problem

formulated in equation (1.7), which describes the time evolution of the cosmic ray distribution

function f(t, r, p) under spherical symmetry. As discussed in the previous section, this

equation includes advection, diffusion, adiabatic losses and source injection terms, and must be

solved over a finite radial domain with physically motivated boundary and initial conditions.

To the best of our knowledge, no publicly available numerical code currently solves this

equation in spherical coordinates with the required level of generality and in a form adapted to

wind-blown bubble environments. Existing high-quality tools such as GALPROP [24],

DRAGON [25] and PICARD [26] are primarily designed for different contexts (large-scale

galactic cosmic ray transport) and operate in cartesian or cylindrical geometries. Nonetheless,

some of their algorithmic structures and numerical strategies have served as useful reference

points during the design phase of our solver. Although the physical problem and mathematical

structure solved here are different, some specific implementation decisions have been inspired

by the general logic of those well-established frameworks. It is important to stress, however,

that all the mathematical formulation and numerical derivation presented in the following

sections have been developed independently as part of this thesis work.

First of all, it is important to talk about the discretization of the spatial and temporal domain.
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Let us remind that t ∈ [0, tend], r ∈ [0, Rend] and p ∈ [0, pmax]. Now, the discretization is done

as follows:

1. Time will be divided in Nt + 1 points such that t ∈ {t0, t1, . . . , tNt}. In particular, we are

considering t0 = 0.

2. Regarding radial coordinate, we apply an static and homogeneous discretization so as to

use Nr + 2 points, thus r ∈ {r0, r1, ..., rNr , rNr+1}. This way, r0 = 0 y rNr+1 = RB are

fixed by boundary conditions.

3. For the momentum coordinate we proceed in an analogous way so as to have

p ∈ {p0, ..., pNp}.

This discretization1 implies that each node of simulation is uniquely determined by 3 indexes:

n, i, k. Index n refers to time tn; index i to position ri; and index k to momentum pk. Under

these conditions we can make use of the notation fn
ik ≡ f(tn, ri, pk).

We will now focus purely on the numerical methodology used. A widely used strategy for

the numerical solution of partial differential equations (PDEs) is the so-called operator splitting

method. In this approach, the PDE (typically composed of several distinct operators) is treated

as a superposition of independent subproblems. That is, in our case,

∂f

∂t
=
∑
α

Lα +Q,

where α ∈ {D,P,A} refers to the advection, momentum loss and diffusion operators, respectively.

As previously discussed, in our case these operators take the form

LD =
1

r2
∂

∂r

(
r2D

∂f

∂r

)
=

2D

r

∂f

∂r
+

∂

∂r

(
D
∂f

∂r

)
=

(
2D

r
+

∂D

∂r

)
∂f

∂r
+D

∂2f

∂r2
,

LP =
∂

∂p

[
p

3

(
1

r2
∂(r2ur)

∂r

)
f

]
,

LA = − 1

r2
∂(r2urf)

∂r
.

The idea behind the method is to advance the solution in time by applying each operator

successively. To illustrate this, using the notation previously mentioned, let us see what the

procedure to compute fn+1 is

1It is worth mentioning here that, in the specific implementation to be carried out in future work, where the

results from PLUTO simulations will be used, the discretization employed by this solver will be related to the

resolution used by PLUTO. However, a detailed discussion of this aspect falls outside the scope of the current

development and will not be addressed at this stage.
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1. We first define an intermediate solution, f∗, as the solution to

∂f∗

∂t
= LD(f

∗) +
Q

3

over the interval t ∈ [tn, tn+1], with the initial condition f∗(tn, ·, ·) = fn.

2. The resulting f∗(tn+1, ·, ·) is then used as the initial condition for the next subproblem.

The second intermediate solution, f∗∗, is obtained by solving

∂f∗∗

∂t
= LP(f

∗∗) +
Q

3

over the same interval t ∈ [tn, tn+1], with f∗∗(tn, ·, ·) = f∗(tn+1, ·, ·).

3. Similarly, a third intermediate step is considered by solving

∂f∗∗∗

∂t
= LA(f

∗∗∗) +
Q

3
,

again over t ∈ [tn, tn+1], with the initial condition f∗∗∗(tn, ·, ·) = f∗∗(tn+1, ·, ·).

4. Finally, the updated solution at the next time step is defined as the result of this successive

application of operators: fn+1 = f∗∗∗(tn+1, ·, ·).

This strategy offers several advantages. For instance, each subproblem can be advanced in

time with its own dedicated time-stepping scheme, allowing for local refinement depending on

the precision requirements of each operator. Furthermore, the numerical treatment of each term

can be addressed individually, without being constrained by the discretization of the other terms.

This flexibility enables the construction of highly modular and general-purpose solvers, which

can be adapted to include only the physical processes relevant to a given problem2.

Regarding the specific order of implementation of operators in the operator splitting scheme,

specific investigation is needed to determine what the optimal setup is for our specific purposes.

Such analysis is left for a subsequent work focused on the case of use of our solver.

In what follows, we present the numerical treatment of each of the 3 subproblems relevant to

our study.

2In such scenarios, for each substep in the time evolution, the source term Q must be divided by nOp, the

number of operators being split. In our particular case, we have nOp = 3.
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3.1.1 Diffusion operator

For the diffusive subproblem in our operator splitting approach, the goal is to solve the system

∂f

∂t
=

1

r2
∂

∂r

(
r2D

∂f

∂r

)
+

Q

3
,

∂f

∂r
(t, 0, ·) = 0, f(t, Rend, ·) = fISM(·),

f(0, r, ·) = fInj(·)δ(r −RTS),

within the discretized spatial domain. This operator presents a particular challenge that becomes

evident when the PDE is rewritten in the expanded form,

∂f

∂t
=

(
2D

r
+

∂D

∂r

)
∂f

∂r
+D

∂2f

∂r2
+

Q

3
.

A singularity arises at r = 0. However, applying L’Hôpital’s rule allows us to establish that

lim
r→0

2D

r

∂f

∂r
= lim

r→0
2

(
∂D

∂r

∂f

∂r
+D

∂2f

∂r2

)
.

This implies that, at r → 0, the equation becomes

lim
r→0

∂f

∂t
= 3

(
∂D

∂r

∂f

∂r
+D

∂2f

∂r2

)
+

Q

3
= 3D

∂2f

∂r2
+

Q

3
,

where we have used the necessary symmetry condition in spherical coordinates, ∂f
∂r (t, 0, ·) = 0.

The discretization of the diffusion operator at r = 0 is straightforward (and equivalent to the

cartesian case). In particular, using the Crank–Nicolson method, we obtain

fn+1
0 − fn

0

∆t
=3

[
1

2

(
Dn+1

0

fn+1
1 − 2fn+1

0 + fn+1
−1

(∆r)2

)
+

1

2

(
Dn

0

fn
1 − 2fn

0 + fn
−1

(∆r)2

)]

+
1

3

[
1

2
Qn+1

0 +
1

2
Qn

0

]
.

Moreover, by symmetry, we have f−1 = f1, so the expression simplifies to

fn+1
0 − fn

0

∆t
= 3

[(
Dn+1

0

fn+1
1 − fn+1

0

(∆r)2

)
+

(
Dn

0

fn
1 − fn

0

(∆r)2

)]
+

1

3

[
1

2
Qn+1

0 +
1

2
Qn

0

]
.

Inside the domain, for a generic node i, the discretization of the original equation yields

fn+1
i − fn

i

∆t
=

[
1

2

(
2Dn+1

i

r0 + i∆r
+

Dn+1
i+1 −Dn+1

i−1

2∆r

)(
fn+1
i+1 − fn+1

i−1

2∆r

)

+
1

2

(
2Dn

i

r0 + i∆r
+

Dn
i+1 −Dn

i−1

2∆r

)(
fn
i+1 − fn

i−1

2∆r

)]
+

[
1

2

(
Dn+1

i

fn+1
i+1 − 2fn+1

i + fn+1
i−1

(∆r)2

)
+

1

2

(
Dn

i

fn
i+1 − 2fn

i + fn
i−1

(∆r)2

)]

+
1

3

[
1

2
Qn+1

i +
1

2
Qn

i

]
.
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Rearranging both sides leads to

fn+1
i

∆t
− 1

2

(
2Dn+1

i

r0 + i∆r
+

Dn+1
i+1 −Dn+1

i−1

2∆r

)(
fn+1
i+1 − fn+1

i−1

2∆r

)
− 1

2

(
Dn+1

i

fn+1
i+1 − 2fn+1

i + fn+1
i−1

(∆r)2

)
− 1

6
Qn+1

i =

fn
i

∆t
+

1

2

(
2Dn

i

r0 + i∆r
+

Dn
i+1 −Dn

i−1

2∆r

)(
fn
i+1 − fn

i−1

2∆r

)
+

1

2

(
Dn

i

fn
i+1 − 2fn

i + fn
i−1

(∆r)2

)
+

1

6
Qn

i .

As usual, we now define the coefficients

sni =
∆t

4∆r

(
2Dn

i

r0 + i∆r
+

Dn
i+1 −Dn

i−1

2∆r

)
and qni =

∆tDn
i

2(∆r)2
;

and the expression can then be rewritten as

fn+1
i − sn+1

i

(
fn+1
i+1 − fn+1

i−1

)
− qn+1

i

(
fn+1
i+1 − 2fn+1

i + fn+1
i−1

)
− ∆t

6
Qn+1

i =

fn
i + sni

(
fn
i+1 − fn

i−1

)
+ qni

(
fn
i+1 − 2fn

i + fn
i−1

)
+

∆t

6
Qn

i .

Finally, by separating the terms at times n+ 1 and n, we obtain the desired formulation

(sn+1
i − qn+1

i )fn+1
i−1 + (1 + 2qn+1

i )fn+1
i − (sn+1

i + qn+1
i )fn+1

i+1 − ∆t

6
Qn+1

i =

−(sni − qni )f
n
i−1 + (1− 2qni )f

n
i + (sni + qni )f

n
i+1 +

∆t

6
Qn

i .

An analogous treatment can be applied to the equation at r = 0, for which we first define

qn0 =
3Dn

0∆t

(∆r)2
.

After some algebra, we arrive at the final system
(1 + qn+1

0 )fn+1
0 − qn+1

0 fn+1
1 − ∆t

6
Qn+1

0 = (1− qn0 )f
n
0 + qn0 f

n
1 +

∆t

6
Qn

0

(sn+1
i − qn+1

i )fn+1
i−1 + (1 + 2qn+1

i )fn+1
i − (sn+1

i + qn+1
i )fn+1

i+1 − ∆t

6
Qn+1

i =

− (sni − qni )f
n
i−1 + (1− 2qni )f

n
i + (sni + qni )f

n
i+1 +

∆t

6
Qn

i .

It is common to write the Crank–Nicolson system in matrix form. To do so, we define the
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matrices

Ãn+1 =



1 + qn+1
0 −qn+1

0 0 0 0 · · · 0

sn+1
1 − qn+1

1 1 + 2qn+1
1 −sn+1

1 − qn+1
1 0 0 · · · 0

0 sn+1
2 − qn+1

2 1 + 2qn+1
2 −sn+1

2 − qn+1
2 0 · · · 0

0 0 sn+1
3 − qn+1

3 1 + 2qn+1
3 −sn+1

3 − qn+1
3 · · · 0

...
...

...
. . .

. . .
. . .

...

0 0 0 · · · sn+1
Nr−1 − qn+1

Nr−1 1 + 2qn+1
Nr−1 −sn+1

Nr−1 − qn+1
Nr−1

0 0 0 · · · 0 sn+1
Nr

− qn+1
Nr

1 + 2qn+1
Nr


and

An =



1− qn0 qn0 0 0 0 · · · 0

qn1 − sn1 1− 2qn1 sn1 + qn1 0 0 · · · 0

0 qn2 − sn2 1− 2qn2 sn2 + qn2 0 · · · 0

0 0 qn3 − sn3 1− 2qn3 sn3 + qn3 · · · 0

...
...

...
. . .

. . .
. . .

...

0 0 0 · · · qnNr−1 − snNr−1 1− 2qnNr−1 snNr−1 + qnNr−1

0 0 0 · · · 0 qnNr
− snNr

1− 2qnNr



.

Hence, the full system of equations can be written as

Ãn+1Fn+1 + Un+1
cc − ∆t

6
Qn+1 = AnFn + Un

cc +
∆t

6
Qn,

where Ũn+1
cc and Un

cc contain non-zero components only in the last entry, encoding the boundary

condition at RNr+1.

Therefore, the solution at time n+ 1 is given by

Fn+1 =
(
Ãn+1

)−1
(
AnFn + Un

cc − Ũn+1
cc +

∆t

6
(Qn +Qn+1)

)
.
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3.1.2 Loss operator

Once we have treated the diffusion operator, let us focus on the loss subproblem. Firstly, it is

worth noting that the loss operator can be rewritten with the form

∂f

∂t
= − ∂

∂p

[
Ṗ f
]
+

Q

3
.

Here we adopt the notation Ṗ = Ṗ (t, r, p) to denote the momentum loss rate. Since these losses

act by shifting the entire spectrum toward lower momenta (this is, reducing the population at

higher p in favor of lower p values), it is appropriate to employ an upwind discretization scheme.

This is, we can take advantage of the physical direction of propagation in the system, using only

the upstream values (e.g., fn
k and fn

k+1) to compute fn+1
k , since information from fn−1

k−1 does

not influence the solution at higher momenta. Specifically, we also apply a temporal averaging

to remain consistent with the Crank–Nicolson approach, such that we consider the following

discretization (
∂f

∂t

)n+ 1
2

k+ 1
2

=

(
− ∂

∂p

[
Ṗ f
])n+ 1

2

k+ 1
2

+

(
Q

3

)n+ 1
2

k+ 1
2

.

By developing the appropriate finite difference expressions, one arrives at the following

relation

1

2

[(
∂f

∂t

)n+ 1
2

k+1

+

(
∂f

∂t

)n+ 1
2

k

]
= −1

2

[(
∂

∂p

[
Ṗ f
])n+1

k+ 1
2

+

(
∂

∂p

[
Ṗ f
])n

k+ 1
2

]
+

(
Q

3

)n+ 1
2

k+ 1
2

⇒
(
fn+1
k − fn

k

∆t

)
+

(
fn+1
k+1 − fn

k+1

∆t

)
= −

(
Ṗn+1
k+1 f

n+1
k+1 − Ṗn+1

k fn+1
k

∆p

)
+

(
Ṗn
k+1f

n
k+1 − Ṗn

k f
n
k

∆p

)
+ 2

(
Q

3

)n+ 1
2

k+ 1
2

.

Rearranging the terms and multiplying both sides by ∆t, the expression simplifies to(
1− Ṗn+1

k ∆t

∆p

)
fn+1
k +

(
1 +

Ṗn+1
k+1 ∆t

∆p

)
fn+1
k+1 =

(
1 +

Ṗn
k ∆t

∆p

)
fn
k +

(
1− Ṗn

k+1∆t

∆p

)
fn
k+1+2∆t

(
Q

3

)n+ 1
2

k+ 1
2

.

At this point, we can define a helpful constant,

dnk = − Ṗn
k ∆t

∆p
,

which leads to a more compact form of the system:

(
1 + dn+1

k

)
fn+1
k +

(
1− dn+1

k+1

)
fn+1
k+1 = (1− dnk) f

n
k +

(
1 + dnk+1

)
fn
k+1 + 2∆t

(
Q

3

)n+ 1
2

k+ 1
2

.

It is worth noting that in this case, the point k = 0 does not pose any difficulties and the

general update rule can be applied directly. However, for k = Np, a boundary condition must be
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imposed. A reasonable and convenient assumption is to choose a momentum range wide enough

so that fNp+1 = 0, which allows us to write

(
1 + dn+1

Np

)
fn+1
Np

=
(
1− dnNp

)
fn
Np

+ 2∆t

(
Q

3

)n+ 1
2

Np+
1
2

.

Under these conditions, we can define the following matrices

B̃n+1 =



1 + dn+1
0 1− dn+1

1 0 0 · · · 0

0 1 + dn+1
1 1− dn+1

2 0 · · · 0

0 0 1 + dn+1
2 1− dn+1

3 · · · 0

...
...

...
. . .

. . .
...

0 0 0 · · · 1 + dn+1
Np−1 1− dn+1

Np

0 0 0 · · · 0 1 + dn+1
Np


and

Bn =



1− dn0 1 + dn1 0 0 · · · 0

0 1− dn1 1 + dn2 0 · · · 0

0 0 1− dn2 1 + dn3 · · · 0

...
...

...
. . .

. . .
...

0 0 0 · · · 1− dnNp−1 1 + dnNp

0 0 0 · · · 0 1− dnNp



;

and, thus, the system can finally be written in matrix form as

B̃n+1Fn+1 = BnFn +
2∆t

3
Q.

In conclusion, the solution at the next time step is obtained through

Fn+1 =
(
B̃n+1

)−1
(
BnFn +

2∆t

3
Q

)
.

3.1.3 Advection operator

We now turn to the treatment of the advective term in the transport equation. From a

mathematical and numerical perspective, the development is analogous to that of the loss
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operator presented in the previous section. In particular, since we are assuming that the radial

velocity field ur > 0, it is justified and numerically appropriate to apply again an upwind

discretization scheme. This choice guarantees stability and physical consistency, as the

characteristics of the equation propagate from smaller to larger values of the radial coordinate.

The main structural difference with respect to the previous case lies in the indexing of the

discretization. While in the loss term the population shifted from higher to lower momentum

bins (thus, making use of indices k and k+1), the advection operator shifts the solution in space

from lower to higher radial positions. Therefore, the derivation will now involve the nodes i− 1

and i, reflecting the downstream direction of propagation.

Let us recall that the advection subproblem is based on the equation

∂f

∂t
= − 1

r2
∂(r2urf)

∂r
+

Q

3
.

Before showing the numerical approximations, it is important to note that we come to a problem

in r = 0, just as it happened in the diffusion term. We can, however, take the limit to see that

lim
r→0

∂f

∂t
= lim

r→0
− 1

r2
∂(r2urf)

∂r
+

Q

3
= lim

r→0
− 1

r2

(
2rurf + r2

∂(urf)

∂r

)
+

Q

3
= − ∂(urf)

∂r

∣∣∣∣
r=0

+
Q

3

∣∣∣∣
r=0

;

if we assume that urf is finite at r = 0, which is the case we are interested in. Of course, for

our purposes, urf will, in particular, be sufficiently smooth at r = 0 so as to consider that the

spatial first derivative vanishes. This is to say,

lim
r→0

∂f

∂t
=

Q

3

∣∣∣∣
r=0

.

Moreover, for the purposes of our solver, Q|r=0 = 0, so the value f(t, 0) is conserved for t > 0.

This may seem counterintuitive, as even when the advective velocity field ur is non-zero, the

central value of the solution appears to remain unchanged (despite the rest of the distribution

being transported outwards). However, this apparent anomaly is due to the coordinate

singularity in spherical symmetry at r = 0. In fact, this behaviour is physically reasonable: in

a purely radial outflow any fluid element located exactly at the origin experiences a perfectly

symmetric force balance in all directions and therefore remains stationary.

Nevertheless, such specific configurations are not expected to appear in the typical

applications of our solver. Thus, it is safe to assume f(t, 0) = 0 as a working condition for all

practical purposes.

We now move on to the numerical treatment of the advection operator. Since the derivation

is analogous to the loss term, we omit the intermediate steps for the sake of brevity and to
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avoid unnecessary repetition. Proceeding through the same steps of temporal averaging, upwind

discretization and Crank-Nicolson scheme, we finally arrive at the following expression

(
1 + an+1

i

)
fn+1
i +

(
1− bn+1

i−1

)
fn+1
i−1 = (1− ani ) f

n
i +

(
1 + bni−1

)
fn
i−1 + 2∆t

(
Q

3

)n+ 1
2

i− 1
2

.

In the derivation process, we define the constants

ani =
4i2uni ∆t

(2i− 1)2∆r
and bni =

4i2uni ∆t

(2i+ 1)2∆r
.

The discussion made for r = 0 simply translates to setting fn
0 = 0 for every n during the

computation process.

This means that, in this case, the relevant matrices are

C̃n+1 =



0 0 0 0 · · · 0

1− bn+1
0 1 + an+1

1 0 0 · · · 0

0 1− bn+1
1 1 + an+1

2 0 · · · 0

...
...

...
. . .

. . .
...

0 0 0 · · · 1 + an+1
Nr−1 0

0 0 0 · · · 1− bn+1
Nr−1 1 + an+1

Nr


and

Cn =



0 0 0 0 · · · 0

1 + bn0 1− an
1 0 0 · · · 0

0 1 + bn1 1− an
2 0 · · · 0

...
...

...
. . .

. . .
...

0 0 0 · · · 1− an
Np−1 0

0 0 0 · · · 1 + bnNr−1 1− an
Np



;

And so, in matrix formulation, the solution for the system is given by

Fn+1 =
(
C̃n+1

)−1
(
CnFn +

2∆t

3
Q

)
.
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3.2 Numerical validations of the solver

We have now completed the presentation of the three core routines implemented in our solver.

It is therefore appropriate to move on to a set of preliminary numerical validation exercises.

Naturally, the solver admits considerable potential for further optimization and more extensive

validation efforts, which will need to be addressed in future works. Nonetheless, we present here

the first validation runs for each of the independently derived routines.

3.2.1 Diffusion routine

To perform an initial correctness check of the routine related to the diffusive subproblem, we

compare it against a case for which the analytical solution is known. Specifically, if we consider

the situation where Q(t, r) = 0 and D(t, r) = D is constant, then the problem

∂f

∂t
=

1

r2
∂

∂r

(
r2D

∂f

∂r

)
+

Q

3
,

∂f

∂r
(t, 0, ·) = 0, f(t, 1, ·) = 0,

f(0, r) =
sin(πr)

2r
,

admits the analytical solution

f(t, r) =
sin(πr)

2r
e−π2Dt.

For simplicity, we take D = 1 in the numerical simulations.

We can then perform a calculation with our routine using the initial condition considered and

compare its temporal evolution to the one expected by the analytical expression. The results of

this analysis are shown in Figure 3.1.

In the Figure, each pair of lines corresponds to a fixed time t, with colour coding indicating

the time evolution. Solid lines represent the numerical solution obtained using the implemented

solver, while dashed lines correspond to the exact analytical expression. The close agreement

between the two confirms the correct implementation of the diffusion operator and its consistent

behaviour with the Crank–Nicolson scheme used.

One of the key features visible in the plot is the exponential decay of the solution amplitude

over time, which is expected from the analytical form and is accurately captured by the numerical

routine. The consistency between curves is particularly notable across the entire spatial domain,

including the neighbourhood of r = 0, where numerical schemes in spherical coordinates typically

face difficulties due to the singularity. This demonstrates that the specific treatment applied at

the origin is appropriate and does not lead to spurious numerical artifacts.
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Figure 3.1: Validation of the diffusion routine. Numerical solution (solid lines) is compared with the analytical

solution (dashed lines) at several time steps. The colour scale represents the evolution in time up to t = 0.2, with

the initial condition f(0, r) = sin(πr)
2r

. The agreement confirms the validity of the solver for the diffusion operator

in spherical geometry.

Overall, this test provides the first piece of evidence that the solver is capable of modelling

the diffusion of cosmic ray populations under spherical symmetry with accuracy. It also serves

as a robust foundation upon which more complex simulations involving additional transport

operators can be built.

3.2.2 Loss routine

We now consider the validation of the solver in the case of losses. As described in the previous

sections, the numerical routine for this operator was derived using an upwind discretization

consistent with the sign of Ṗ , combined with a Crank–Nicolson temporal averaging scheme. In

order to test the correctness of this implementation, we consider a stationary state problem for

which an analytical solution is known.

The idea is to check whether the numerical scheme is capable of converging towards the

analytical steady state, starting from a null initial condition. More precisely, if p ∈ [1, pmax], we

consider the problem 
∂

∂p

[
Ṗ f
]
= Q,

f(pmax) = 0,
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under the assumptions 
Q = Q0

(
p

p0

)−α

,

Ṗ = −b0

(
p

p0

)β

,

where α > β > 0 and b0, Q0 > 0. The source term Q injects particles at all momenta with a

power-law dependence, while the momentum loss rate Ṗ follows a similarly simple power law.

These functional forms are relevant in astrophysical contexts, where radiative or adiabatic losses

often scale with momentum.

Under these assumptions, the problem admits the analytical solution

f(p) =
Q0p0

(1− α)b0

[(
pmax

p0

)1−α( p

p0

)−β

−
(

p

p0

)1−α−β
]
,

which will serve as our reference profile. Starting from the initial condition f(0, p) = 0, we

numerically evolve the system and then compare the profile that the solution approaches with

the analytical expression. This test provides a useful way to confirm that the solver handles

both the shape and normalization of the spectrum correctly under the influence of continuous

momentum losses.

Using pmax = 1000, p0 = b0 = Q0 = 1, α = 4 and β = 2; the results of the analysis is shown

in Figure 3.2.

The graphic displays the evolution of the distribution function under the sole effect of

momentum losses, starting from an initial condition f(0, p) = 0. As time progresses, the

spectrum builds up and gradually converges towards the analytical steady-state profile shown

as a dashed black line. The agreement between the numerical and analytical solutions is

excellent across the entire momentum range, demonstrating that the loss operator has been

implemented correctly.

It is worth noting that the most significant deviations appear at early times and very low

momenta. Nevertheless, the overall behaviour is robust and the numerical method successfully

captures the asymptotic regime. This validation test is a first confirmation that the solver

properly handles continuous losses and can be reliably used in more complex, physically

motivated scenarios.

3.2.3 Advection routine

We now turn to the validation of the advection operator. As in the previous cases, we aim to

compare the numerical evolution of a controlled test case with a known analytical solution in

order to verify the correctness of the implementation.
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Figure 3.2: Numerical validation of the loss operator. The figure shows the temporal evolution of the spectrum

p2f(t, p) under the influence of continuous momentum losses. The solid lines correspond to the numerical solution

at different times, while the dashed black line indicates the analytical steady-state solution. Momentum is shown

on a logarithmic scale, and colour encodes the simulation time.

For this purpose, we consider a purely advective scenario, governed by the equation

∂f

∂t
= − 1

r2
∂

∂r
(r2urf),

with a constant outward velocity field ur > 0 and no source term, this is, Q = 0. Under these

assumptions, the physical problem describes the advection of a given distribution at constant

speed and the solution at any later time corresponds to a transformed initial condition. More

precisely, the solution to the problem with f(0, r) = f0(r) is

f(t, r) =

(
r − urt

r

)2

f0(r − urt).

We take as initial condition a toroidal profile in the form of a gaussian ring,

f(0, r) = e−
1
2(

r−0.3
0.1 )

2

,

centered at r = 0.3 with standard deviation of 0.1. This distribution is then transported radially

outward by the wind field and we aim to recover its evolution by means of our numerical scheme.

The results of the simulation are presented in Figure 3.3.

In the figure, the initial gaussian ring is transported outward under a constant radial velocity
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Figure 3.3: Validation of the advection routine. Numerical solution (solid lines) is compared with the analytical

solution (dashed lines) at several time steps. The initial profile is a gaussian torus centered at r = 0.3 and is

advected outward with a constant velocity field. Colour encodes time.

and the numerical solution is compared against the exact analytical expression. The excellent

agreement between both confirms the accuracy of the numerical implementation.

It is important to note the progressive decay in the amplitude of the profile as time advances.

This behaviour was already anticipated from the analytical solution, which includes a geometric

prefactor of the form
(
r−urt

r

)2
. This term arises naturally from the spherical symmetry of the

problem and physically reflects the conservation of mass in a radially expanding flow. As the

density moves outward, it spreads over a larger spherical surface area, leading to a dilution of the

profile. The numerical results faithfully reproduce this expected behaviour, further validating

the implementation of the advection routine.

This test case provides a first proof the stability and accuracy of the upwind scheme

implemented for the advection operator, particularly in preserving the shape and amplitude of

the transported distribution.
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Conclusions

The study presented in this thesis addresses a timely and increasingly relevant question in high-

energy astrophysics: the potential role of young massive star clusters as sources of cosmic rays,

particularly as contributors to the population of particles reaching PeV energies. Motivated by

recent observational evidence and theoretical developments, this work contributes to the field

by developing numerical tools tailored to simulate the extreme environments created by the

collective winds of massive stars and to study the transport of energetic particles within them.

To this end, hydrodynamical simulations of stellar wind-driven bubbles were carried out

using the PLUTO code, yielding detailed spatial profiles of the relevant physical quantities that

characterize the medium in which cosmic rays propagate. In parallel, a numerical solver for

the spherically symmetric cosmic ray transport equation has been implemented, providing a

novel computational approach adapted to the geometry and physical conditions typical of young

stellar clusters. This solver, designed with computational efficiency in mind, opens the door to

systematic studies and data fitting aimed at interpreting γ-ray observations.

The combination of these two components lays the foundation for a comprehensive

modelling framework that bridges the gap between theoretical modelling and observational

data. While this work has not included a complete analysis of observational data or cosmic ray

transport simulations, it sets the stage for future developments that will allow such studies.

These advancements will enable more insightful studies of individual star clusters and their

potential role as γ-ray sources.

Future work will focus on integrating the solver with hydrodynamical simulations in a

unified framework and providing more extensive numerical validation, exploring different

cluster configurations and comparing the predicted emission with observational data. In this

context, one promising extension is the incorporation of effective transport coefficients that

phenomenologically account for multidimensional effects absent in 1D simulations. For

instance, preliminary tests with a modified conductivity κmix, inspired by turbulent mixing
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induced by hydrodynamical instabilities [60], showed encouraging qualitative results and may

serve as a basis for future refinements of the model. These efforts will contribute not only to

testing the PeVatron hypothesis, but also to enriching our understanding of the complex

interplay between stellar evolution, plasma dynamics and particle physics in some of the most

energetic environments in our galaxy.
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W. Menn, R. A. Mewaldt, J. W. Mitchell, S. M. Schindler, M. Simon, and R. E. Streitmatter. Measurement of the

Abundance of Radioactive 10Be and Other Light Isotopes in Cosmic Radiation up to 2 GeV Nucleon−1 with the

Balloon-borne Instrument ISOMAX. , 611(2):892–905, August 2004. doi: 10.1086/422384.

[41] Bradley W. Carroll and Dale A. Ostlie. An Introduction to Modern Astrophysics. 1996.

[42] B. Cameron Reed. New estimates of the solar-neighborhood massive star birthrate and the galactic supernova rate.

The Astronomical Journal, 130(4):1652, oct 2005. doi: 10.1086/444474. URL https://dx.doi.org/10.1086/444474.

[43] R. D. Blandford and J. P. Ostriker. Particle acceleration by astrophysical shocks. , 221:L29–L32, April 1978. doi:

10.1086/182658.

[44] L. Oc. Drury. REVIEW ARTICLE: An introduction to the theory of diffusive shock acceleration of energetic particles

in tenuous plasmas. Reports on Progress in Physics, 46(8):973–1027, August 1983. doi: 10.1088/0034-4885/46/8/002.

[45] Pierre Cristofari. The Hunt for Pevatrons: The Case of Supernova Remnants. Universe, 7(9):324, August 2021. doi:

10.3390/universe7090324.

[46] Mark R. Krumholz, Christopher F. McKee, and Joss Bland-Hawthorn. Star Clusters Across Cosmic Time. , 57:

227–303, August 2019. doi: 10.1146/annurev-astro-091918-104430.

[47] Charles J. Lada and Elizabeth A. Lada. Embedded Clusters in Molecular Clouds. , 41:57–115, January 2003. doi:

10.1146/annurev.astro.41.011802.094844.

[48] Simon F. Portegies Zwart, Stephen L. W. McMillan, and Mark Gieles. Young Massive Star Clusters. , 48:431–493,

September 2010. doi: 10.1146/annurev-astro-081309-130834.

[49] R. Weaver, R. McCray, J. Castor, P. Shapiro, and R. Moore. Interstellar bubbles. II. Structure and evolution. , 218:

377–395, December 1977. doi: 10.1086/155692.

[50] L. Spitzer. Physics of Fully Ionized Gases. 1962.

50

https://doi.org/10.5281/zenodo.4396125
https://dx.doi.org/10.1086/444474


[51] Lachlan Lancaster, Eve C. Ostriker, Jeong-Gyu Kim, and Chang-Goo Kim. Efficiently Cooled Stellar Wind Bubbles

in Turbulent Clouds. I. Fractal Theory and Application to Star-forming Clouds. , 914(2):89, June 2021. doi: 10.3847/

1538-4357/abf8ab.

[52] Lachlan Lancaster, Eve C. Ostriker, Jeong-Gyu Kim, and Chang-Goo Kim. Efficiently Cooled Stellar Wind Bubbles

in Turbulent Clouds. II. Validation of Theory with Hydrodynamic Simulations. , 914(2):90, June 2021. doi: 10.3847/

1538-4357/abf8ac.

[53] A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni, and A. Ferrari. PLUTO: A Numerical Code

for Computational Astrophysics. , 170(1):228–242, May 2007. doi: 10.1086/513316.

[54] J M Pittard, C J Wareing, and M M Kupilas. How to inflate a wind-blown bubble. Monthly Notices of the Royal

Astronomical Society, 508(2):1768–1776, 09 2021. ISSN 0035-8711. doi: 10.1093/mnras/stab2712. URL https:

//doi.org/10.1093/mnras/stab2712.

[55] S. Celli, A. Specovius, S. Menchiari, A. Mitchell, and G. Morlino. Mass and wind luminosity of young Galactic open

clusters in Gaia DR2. , 686:A118, June 2024. doi: 10.1051/0004-6361/202348541.

[56] L. D. Anderson, T. M. Bania, Dana S. Balser, V. Cunningham, T. V. Wenger, B. M. Johnstone, and W. P. Armentrout.

The WISE Catalog of Galactic H II Regions. , 212(1):1, May 2014. doi: 10.1088/0067-0049/212/1/1.

[57] Stoop, M., Kaper, L., de Koter, A., Guo, D., Lamers, H. J. G. L. M., and Rieder, S. The early evolution of young

massive clusters - the kinematic history of ngc 6611/m16. AA, 670:A108, 2023. doi: 10.1051/0004-6361/202244511.

URL https://doi.org/10.1051/0004-6361/202244511.

[58] Ralph S. Sutherland, David K. Bisset, and Geoffrey V. Bicknell. The numerical simulation of radiative shocks. i.

the elimination of numerical shock instabilities using a local oscillation filter. The Astrophysical Journal Supplement

Series, 147(1):187, jul 2003. doi: 10.1086/374795. URL https://dx.doi.org/10.1086/374795.

[59] D. A. Badjin, S. I. Glazyrin, K. V. Manukovskiy, and S. I. Blinnikov. On physical and numerical instabilities arising

in simulations of non-stationary radiatively cooling shocks. Monthly Notices of the Royal Astronomical Society, 459

(2):2188–2211, 04 2016. ISSN 0035-8711. doi: 10.1093/mnras/stw790. URL https://doi.org/10.1093/mnras/stw790.

[60] Kareem El-Badry, Eve C Ostriker, Chang-Goo Kim, Eliot Quataert, and Daniel R Weisz. Evolution of supernovae-

driven superbubbles with conduction and cooling. Monthly Notices of the Royal Astronomical Society, 490(2):1961–

1990, 10 2019. ISSN 0035-8711. doi: 10.1093/mnras/stz2773. URL https://doi.org/10.1093/mnras/stz2773.

51

https://doi.org/10.1093/mnras/stab2712
https://doi.org/10.1093/mnras/stab2712
https://doi.org/10.1051/0004-6361/202244511
https://dx.doi.org/10.1086/374795
https://doi.org/10.1093/mnras/stw790
https://doi.org/10.1093/mnras/stz2773

	Introduction
	Cosmic rays acceleration in star clusters
	Galactic cosmic ray acceleration
	Introduction to stellar clusters physics
	The transport equation

	Simulating stellar clusters with PLUTO
	What is PLUTO?
	Configurations considered
	Results
	Purely hydrodynamical system
	Thermal conduction
	Radiative cooling
	Application to real star cluster


	Development of a numerical solver for transport equation
	Mathematical foundations of the solver
	Diffusion operator
	Loss operator
	Advection operator

	Numerical validations of the solver
	Diffusion routine
	Loss routine
	Advection routine


	Conclusions
	Bibliography

